3.41 \(\int (d x)^m (a+b \text {csch}^{-1}(c x)) \, dx\)

Optimal. Leaf size=67 \[ \frac {(d x)^{m+1} \left (a+b \text {csch}^{-1}(c x)\right )}{d (m+1)}+\frac {b (d x)^m \, _2F_1\left (\frac {1}{2},-\frac {m}{2};1-\frac {m}{2};-\frac {1}{c^2 x^2}\right )}{c m (m+1)} \]

[Out]

(d*x)^(1+m)*(a+b*arccsch(c*x))/d/(1+m)+b*(d*x)^m*hypergeom([1/2, -1/2*m],[1-1/2*m],-1/c^2/x^2)/c/m/(1+m)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {6284, 339, 364} \[ \frac {(d x)^{m+1} \left (a+b \text {csch}^{-1}(c x)\right )}{d (m+1)}+\frac {b (d x)^m \, _2F_1\left (\frac {1}{2},-\frac {m}{2};1-\frac {m}{2};-\frac {1}{c^2 x^2}\right )}{c m (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^m*(a + b*ArcCsch[c*x]),x]

[Out]

((d*x)^(1 + m)*(a + b*ArcCsch[c*x]))/(d*(1 + m)) + (b*(d*x)^m*Hypergeometric2F1[1/2, -m/2, 1 - m/2, -(1/(c^2*x
^2))])/(c*m*(1 + m))

Rule 339

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Dist[((c*x)^(m + 1)*(1/x)^(m + 1))/c, Subst
[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, b, c, m, p}, x] && ILtQ[n, 0] &&  !RationalQ[m]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 6284

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcCsch[c*
x]))/(d*(m + 1)), x] + Dist[(b*d)/(c*(m + 1)), Int[(d*x)^(m - 1)/Sqrt[1 + 1/(c^2*x^2)], x], x] /; FreeQ[{a, b,
 c, d, m}, x] && NeQ[m, -1]

Rubi steps

\begin {align*} \int (d x)^m \left (a+b \text {csch}^{-1}(c x)\right ) \, dx &=\frac {(d x)^{1+m} \left (a+b \text {csch}^{-1}(c x)\right )}{d (1+m)}+\frac {(b d) \int \frac {(d x)^{-1+m}}{\sqrt {1+\frac {1}{c^2 x^2}}} \, dx}{c (1+m)}\\ &=\frac {(d x)^{1+m} \left (a+b \text {csch}^{-1}(c x)\right )}{d (1+m)}-\frac {\left (b \left (\frac {1}{x}\right )^m (d x)^m\right ) \operatorname {Subst}\left (\int \frac {x^{-1-m}}{\sqrt {1+\frac {x^2}{c^2}}} \, dx,x,\frac {1}{x}\right )}{c (1+m)}\\ &=\frac {(d x)^{1+m} \left (a+b \text {csch}^{-1}(c x)\right )}{d (1+m)}+\frac {b (d x)^m \, _2F_1\left (\frac {1}{2},-\frac {m}{2};1-\frac {m}{2};-\frac {1}{c^2 x^2}\right )}{c m (1+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 81, normalized size = 1.21 \[ \frac {x (d x)^m \left ((m+1) \left (a+b \text {csch}^{-1}(c x)\right )+\frac {b c x \sqrt {\frac {1}{c^2 x^2}+1} \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};-c^2 x^2\right )}{\sqrt {c^2 x^2+1}}\right )}{(m+1)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m*(a + b*ArcCsch[c*x]),x]

[Out]

(x*(d*x)^m*((1 + m)*(a + b*ArcCsch[c*x]) + (b*c*Sqrt[1 + 1/(c^2*x^2)]*x*Hypergeometric2F1[1/2, (1 + m)/2, (3 +
 m)/2, -(c^2*x^2)])/Sqrt[1 + c^2*x^2]))/(1 + m)^2

________________________________________________________________________________________

fricas [F]  time = 0.83, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} \left (d x\right )^{m}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*arccsch(c*x)),x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)*(d*x)^m, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} \left (d x\right )^{m}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*arccsch(c*x)),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)*(d*x)^m, x)

________________________________________________________________________________________

maple [F]  time = 0.05, size = 0, normalized size = 0.00 \[ \int \left (d x \right )^{m} \left (a +b \,\mathrm {arccsch}\left (c x \right )\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(a+b*arccsch(c*x)),x)

[Out]

int((d*x)^m*(a+b*arccsch(c*x)),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ {\left (c^{2} d^{m} \int \frac {x^{2} x^{m}}{c^{2} {\left (m + 1\right )} x^{2} + {\left (c^{2} {\left (m + 1\right )} x^{2} + m + 1\right )} \sqrt {c^{2} x^{2} + 1} + m + 1}\,{d x} - \frac {d^{m} x x^{m} \log \relax (x) - d^{m} x x^{m} \log \left (\sqrt {c^{2} x^{2} + 1} + 1\right )}{m + 1} - \int \frac {{\left (c^{2} d^{m} {\left (m + 1\right )} x^{2} \log \relax (c) + d^{m} {\left (m + 1\right )} \log \relax (c) - d^{m}\right )} x^{m}}{c^{2} {\left (m + 1\right )} x^{2} + m + 1}\,{d x}\right )} b + \frac {\left (d x\right )^{m + 1} a}{d {\left (m + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m*(a+b*arccsch(c*x)),x, algorithm="maxima")

[Out]

(c^2*d^m*integrate(x^2*x^m/(c^2*(m + 1)*x^2 + (c^2*(m + 1)*x^2 + m + 1)*sqrt(c^2*x^2 + 1) + m + 1), x) - (d^m*
x*x^m*log(x) - d^m*x*x^m*log(sqrt(c^2*x^2 + 1) + 1))/(m + 1) - integrate((c^2*d^m*(m + 1)*x^2*log(c) + d^m*(m
+ 1)*log(c) - d^m)*x^m/(c^2*(m + 1)*x^2 + m + 1), x))*b + (d*x)^(m + 1)*a/(d*(m + 1))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\left (d\,x\right )}^m\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right ) \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m*(a + b*asinh(1/(c*x))),x)

[Out]

int((d*x)^m*(a + b*asinh(1/(c*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (d x\right )^{m} \left (a + b \operatorname {acsch}{\left (c x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m*(a+b*acsch(c*x)),x)

[Out]

Integral((d*x)**m*(a + b*acsch(c*x)), x)

________________________________________________________________________________________